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Aims of this talk
◦ Give an appreciation of the complexity of modern quantum mechanics experiments.

◦ Understand why they are well suited to machine learning techniques.

◦ Showcase examples where machine learning has been used to optimise these experiments.
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Why build these experiments?
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A typical apparatus
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A typical sequence

◦ Large number of 
experimental parameters.

◦ Complex sequence in time-
domain.

◦ Vast parameter space.

◦ …but already computer 
controlled!
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Machine learning: 
optimisation
PRODUCING ULTRACOLD GASES
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Why machine learning?

◦ Learner acquires an intuitive understanding of how an experiment behaves 
with no a priori model.

◦ Unbiased, led only by the data itself. May find counter-intuitive and 
unexpected solutions.

◦ Patience: Can meticulously and rigorously explore a parameter space, 
without distraction.

◦ Optimisation frees experimentalists to think about the physics.
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Two workhorse techniques:

◦ Evaporative cooling

◦ Laser cooling
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Evaporative cooling
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Velocity

P(v)

High energy ‘tail’



Optimisation of evaporative 
cooling

◦ Atoms confined through the 
dipole force.

◦ Trap formed by red-detuned laser 
beams.

◦ Trap depth proportional to the 
intensity of the laser beams.

◦ Maximum here of ~70 uK

◦ Evaporative cooling by ramping 
the laser beam intensity.

10Wigley et al, Scientific Reports, (2016)

Measure temperature by imaging the atom 
distribution after time-of-flight

→ provides a means to measure 
performance

HOT COLD



Optimisation of evaporative 
cooling

◦ Goal: Maximise phase space density at the end of evaporative cooling →
produce colder, denser clouds

◦ Wigley et al model the experiment as a Gaussian Process.
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Gaussian Process
(Model of the experiment)

The experiment
(Driven by parameters X)

The cost function
Measure of performance

Wigley et al, Scientific Reports, (2016)

Parameters,



Optimisation of evaporative 
cooling

12Wigley et al, Scientific Reports, (2016)



Optimisation of evaporative 
cooling

◦ Optimising using Gaussian Process gives fast convergence and allows the most important
parameters to be determined.

13Wigley et al, Scientific Reports, (2016)



Benchmarking the Gaussian 
Process

14Barker et al, Mach. Learn. Sci. & Tech, (2020)



Laser cooling

◦ Photons have 
momentum ℏ𝑘.

◦ Absorption from a well-
defined direction.

◦ Re-emission in a 
random direction.

◦ Net force applied.
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◦ Atoms scatter photons within 
a narrow range of 
frequencies.

◦ Use doppler shift to favour 
absorption from laser beam 
opposite to direction of travel.

LAB

ATOM

F

→ 𝑣

◦ To make a trap, apply a magnetic field 
gradient.

◦ Detuning becomes spatially 
dependent through the zeeman
effect.



Optimisation of laser cooling

◦ 3 control variables:
◦ Cooling light detuning

◦ Repumping light detuning

◦ Magnetic field gradient

◦ Separated into 21 time bins

◦ 21x3=63 total parameters

◦ Optimise optical density.

◦ Absorption through cloud 
measured using a photodiode.

◦ Use 3 Neural networks to model 
behaviour of experiment.

16Tranter et al, Nat. Comm, (2018)



Optimisation of laser cooling

17Tranter et al, Nat. Comm, (2018)



Optimisation of laser cooling
ML produces a better sequence, with entirely unpredicted features.

18Tranter et al, Nat. Comm, (2018)



Multi-stage optimisation
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◦ We perform a full optimisation of all stages of our apparatus.

◦ First, use Gaussian Process to reduce the parameter space.

◦ Optimise most important parameters from each stage.

Barker et al, Mach. Learn. Sci. & Tech, (2020)

All

Human

Laser

Evap



Tailoring the cost function
◦ Easily re-optimise for specific scenarios – just redefine the cost function to 

suit goal!
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Here: maximise atom number at a desired temperature.

Barker et al, Mach. Learn. Sci. & Tech, (2020)



Machine learning: 
characterisation
FAST AND EFFICIENT EVALUATION OF DEVICES
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Efficiently Measuring a 
Quantum Device

◦ Goal: to accurately 
characterise a quantum 
device with as few 
measurements as 
possible.

◦ Device characterised by 
measuring conductance 
for different electrode 
voltages.

◦ What measurements 
should we make to 
extract the largest 
possible amount of 
information?

22Lennon, NPJ Quantum Information, (2019)



Efficiently Measuring a 
Quantum Device
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Lennon, NPJ Quantum Information, (2019)

Lennon, NPJ Quantum Information, (2019)



Efficiently Measuring a 
Quantum Device
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Lennon, NPJ Quantum Information, (2019)

Lennon, NPJ Quantum Information, (2019)



Efficiently Measuring a 
Quantum Device

◦ Define gradient:

𝑣 𝑥 =
𝜕𝐼 𝑥

𝜕𝑉𝐺

2

+
𝜕𝐼 𝑥

𝜕𝑉𝑏𝑖𝑎𝑠

2

Define information content:

𝑟 = 1 −
Σ𝑚𝑣 𝑚

Σ 𝑣(𝑚)
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Lennon, NPJ Quantum Information, (2019)

The ML performance is close to optimal, it 
greatly outperforms a simple raster scan.

Lennon, NPJ Quantum Information, (2019)



Conclusions

◦ Learner acquires an intuitive understanding of how an experiment behaves 
with no a priori model.

◦ Unbiased, led only by the data itself. May find counter-intuitive and 
unexpected solutions.

◦ Patience: Can meticulously and rigorously explore a parameter space, 
without distraction.

◦ Optimisation frees experimentalists to think about the physics.
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Thank you for 
listening
QUESTIONS
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Zeeman Deceleration:
◦ Optimise the cooling of atoms using applied pulsed magnetic fields.

◦ Evolutionary algorithm

◦ 60-fold increase in the flux of cooled atoms!

29

Toscano, J. Phys. Chem. (2019)



More detail on the cost 
function
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