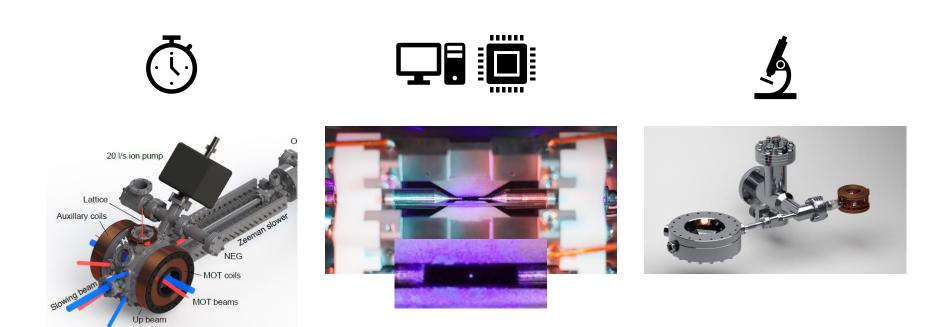
Machine Learning in QM experiments

DR. ELLIOT BENTINE

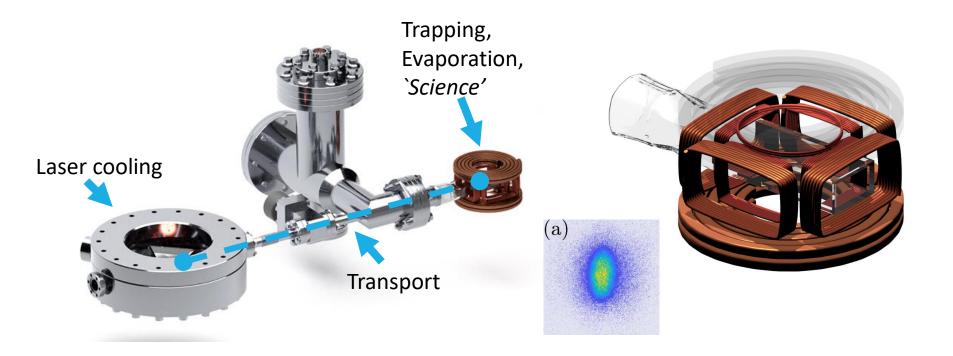
Aims of this talk

- Give an appreciation of the **complexity** of modern quantum mechanics experiments.
- Understand **why** they are well suited to machine learning techniques.
- Showcase examples where machine learning has been used to optimise these experiments.

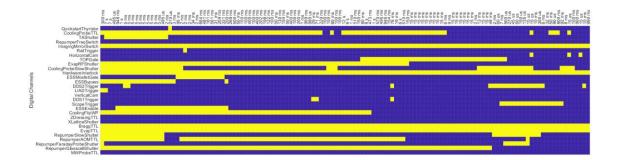
Why build these experiments?



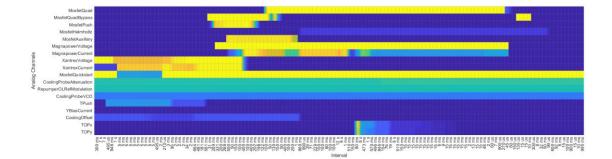
A typical apparatus



A typical sequence



- Large number of experimental parameters.
- Complex sequence in timedomain.
- Vast parameter space.
- ...but already computer controlled!



Machine learning: optimisation

PRODUCING ULTRACOLD GASES

Why machine learning?

- Learner acquires an **intuitive understanding** of how an experiment behaves with no *a priori* model.
- **Unbiased**, led only by the data itself. May find counter-intuitive and unexpected solutions.
- **Patience:** Can meticulously and rigorously explore a parameter space, without distraction.
- Optimisation frees experimentalists to think about the physics.

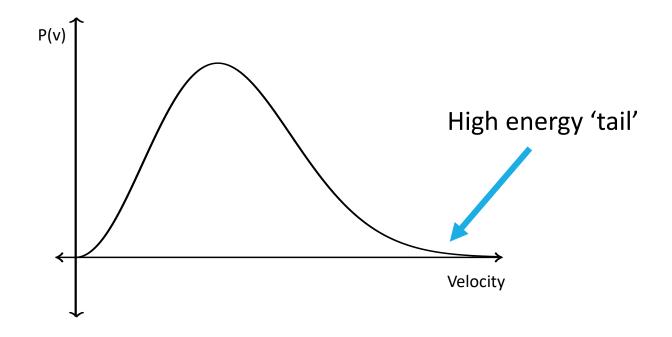
Two workhorse techniques:

Evaporative cooling

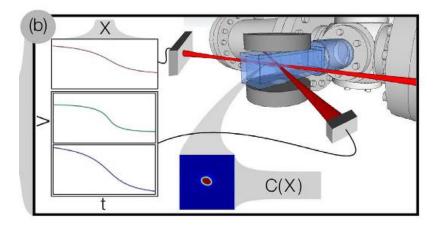
sss

⁵⁵⁵

Evaporative cooling

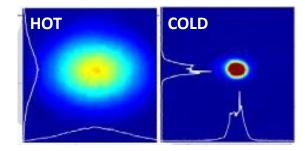


Optimisation of evaporative cooling



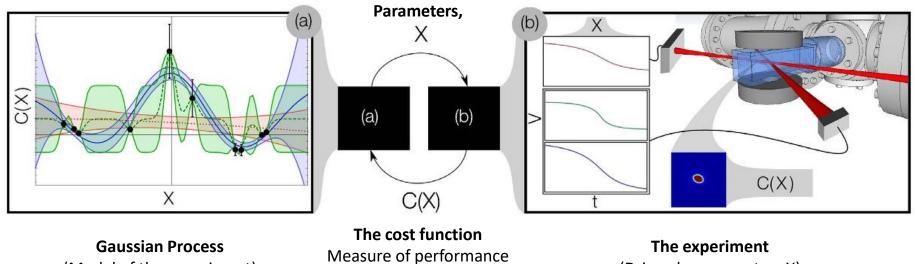
Measure temperature by imaging the atom distribution after time-of-flight → provides a means to measure performance

- Atoms confined through the dipole force.
- Trap formed by red-detuned laser beams.
- Trap depth proportional to the intensity of the laser beams.
 - Maximum here of ~70 uK
- Evaporative cooling by ramping the laser beam intensity.



Optimisation of evaporative cooling

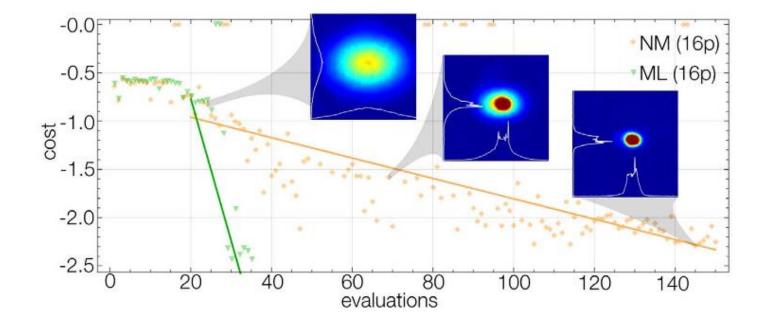
- Goal: Maximise phase space density at the end of evaporative cooling \rightarrow 0 produce colder, denser clouds
- Wigley et al model the experiment as a **Gaussian Process**.



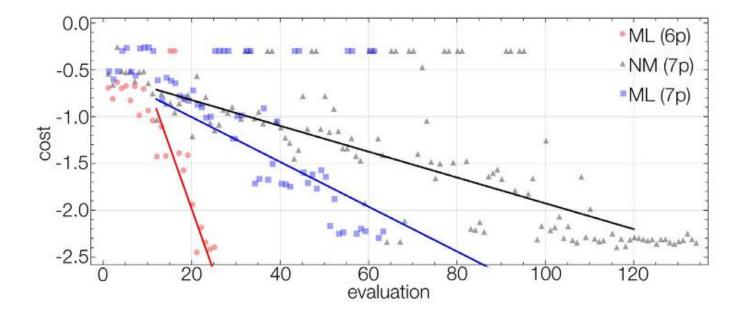
(Model of the experiment)

(Driven by parameters X)

Optimisation of evaporative cooling

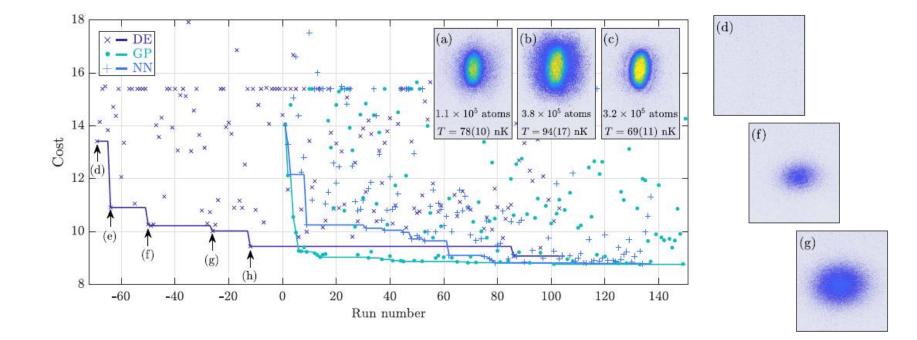


Optimisation of evaporative cooling

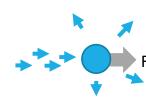


 Optimising using Gaussian Process gives fast convergence and allows the most important parameters to be determined.

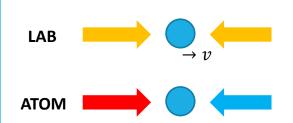
Benchmarking the Gaussian Process



Laser cooling

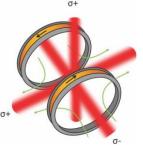


- Photons have momentum ħk.
- Absorption from a welldefined direction.
- Re-emission in a random direction.
- Net force applied.

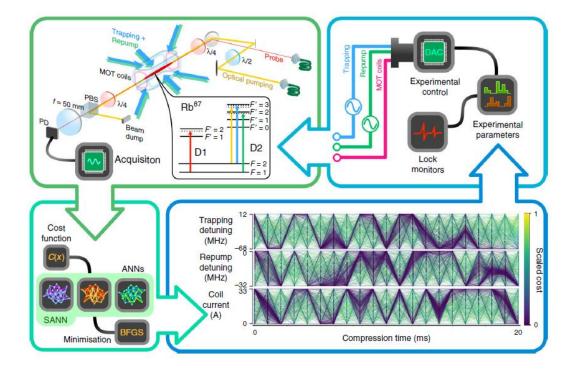


- Atoms scatter photons within a narrow range of frequencies.
- Use doppler shift to favour absorption from laser beam opposite to direction of travel.

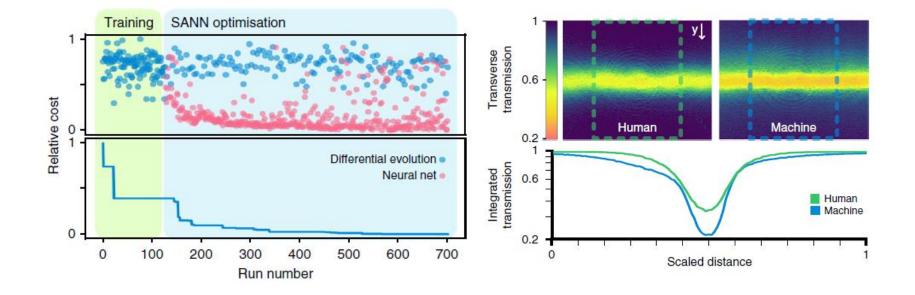
- To make a trap, apply a magnetic field gradient.
- Detuning becomes spatially dependent through the zeeman effect.



Optimisation of laser cooling

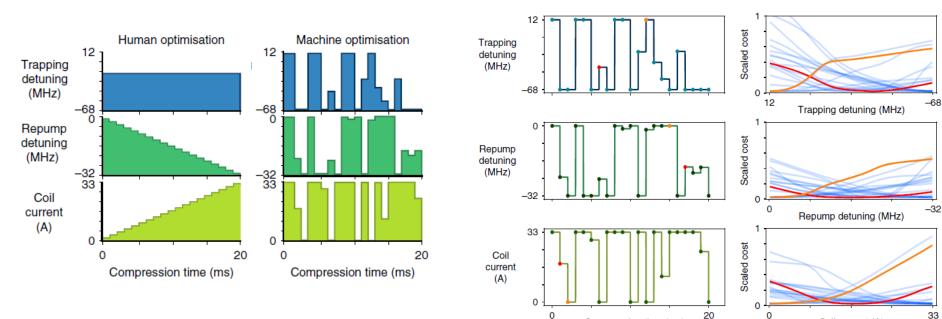


- 3 control variables:
 - Cooling light detuning
 - Repumping light detuning
 - Magnetic field gradient
- Separated into 21 time bins
- 21x3=63 total parameters
- Optimise **optical density**.
- Absorption through cloud measured using a photodiode.
- Use 3 Neural networks to model behaviour of experiment.



Optimisation of laser cooling

ML produces a better sequence, with entirely unpredicted features.



Coil current (A)

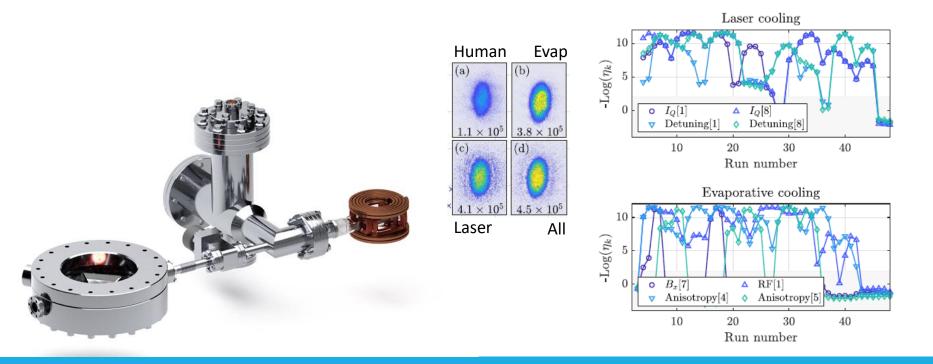
20

Compression time (ms)

0

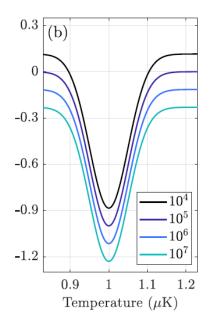
Multi-stage optimisation

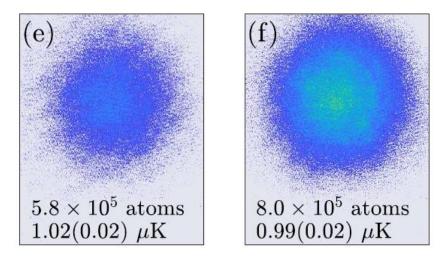
- We perform a full optimisation of all stages of our apparatus.
- First, use Gaussian Process to reduce the parameter space.
- Optimise most important parameters from each stage.



Tailoring the cost function

 Easily re-optimise for specific scenarios – just redefine the cost function to suit goal!

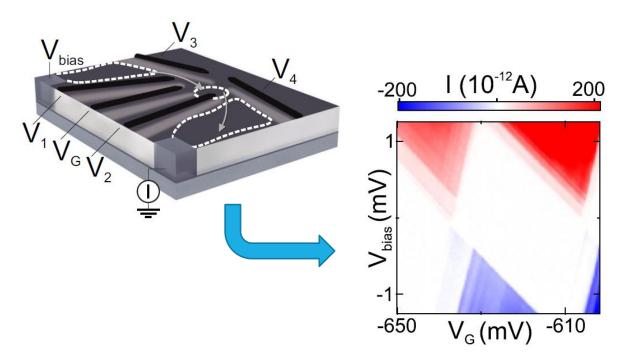




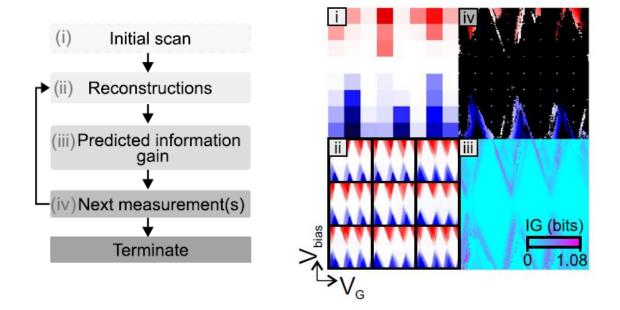
Here: maximise atom number at a desired temperature.

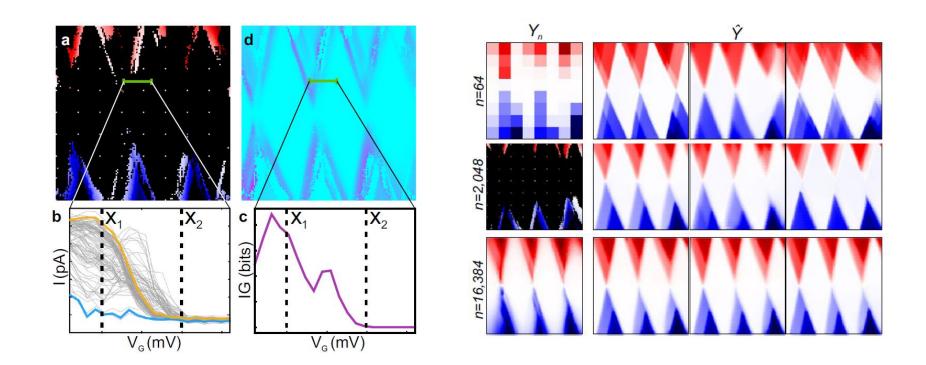
Machine learning: characterisation

FAST AND EFFICIENT EVALUATION OF DEVICES



- Goal: to accurately characterise a quantum device with as few measurements as possible.
- Device characterised by measuring conductance for different electrode voltages.
- What measurements should we make to extract the largest possible amount of information?

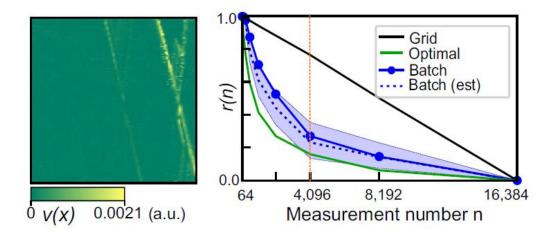




• Define gradient:

$$v(x) = \sqrt{\left(\frac{\partial I(x)}{\partial V_G}\right)^2 + \left(\frac{\partial I(x)}{\partial V_{bias}}\right)^2}$$

Define information content: $r = 1 - \frac{\Sigma_m v(m)}{\Sigma v(m)}$



The ML performance is close to optimal, it greatly outperforms a simple raster scan.

Conclusions

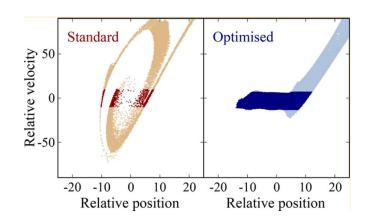
- Learner acquires an **intuitive understanding** of how an experiment behaves with no *a priori* model.
- **Unbiased**, led only by the data itself. May find counter-intuitive and unexpected solutions.
- **Patience:** Can meticulously and rigorously explore a parameter space, without distraction.
- Optimisation frees experimentalists to think about the physics.

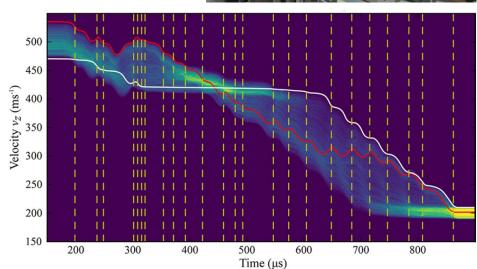
Thank you for listening

QUESTIONS

Zeeman Deceleration:

- Optimise the cooling of atoms using applied pulsed ma
- Evolutionary algorithm
- o 60-fold increase in the flux of cooled atoms!







More detail on the cost function

